VARIABLE CAPACITY COMPRESSORS ELECTRONIC INVERTER

PRODUCT MANUAL CF05D INVERTER

www.embraco.com

May , 2020

Version 00

Contents

1	INTF	RODUCTION	1
2	TECH 2.1 2.2	HNICAL SPECIFICATIONS Nomenclature Product specifications 2.2.1 Label information 2.2.2 Agency approval 2.2.3 Product dimensions 2.2.4 Connectors 2.2.5 Cables Information about input inrush current	2 2 3 5 5 6 7 8 9
3	INST 3.1 3.2	Before you begin	lC lC l1
	3.2	3.2.1 Compressor cable connection	L3 L4 L7
	3.3 3.4	Safety Recommendations of Electrical Installation	2C 21 22
4	4.1 4.2	Frequency control mode Drop-In control mode 4.2.1 Smart Drop-In 4.2.2 Defrost input (optional) 4.2.3 Drop-in connection	23 26 26 27 27
	4.3	4.3.1 Serial specifications and Internal Circuit	29 29 31
5	5.1	LED indication	35 35

Chapter 1

INTRODUCTION

This document contains information regarding technical specifications, installation instructions and functionality of CFO5D Inverter family. It is intended to be used during project phase for proper specifications of system configuration and design, in order to ensure the best application and performance available with use of Embraco's Variable Capacity Compressors and avoid undesired issues.

Before you begin the reading of this material, below is presented the convention about some information contained in this document and how such information must be interpreted.

Incorrect operation that could result in bodily injury or death due to electrical hazard.

Incorrect operation that could result in equipment damage.

NOTICE

Contain helpful suggestions or references to material not covered in this document. To obtain access to such materials, please contact your technical support.

Chapter 2

TECHNICAL SPECIFICATIONS

2.1 Nomenclature

	CF 05 D KK N 0.0 YY A ZZ
CF	Driver Type
05	Family
D	Generation
KK	Subversion
N	Power Supply
0.0	Protective Function configuration
YY	Eletronic Configuration
А	Enclosure
ZZ	Cables and Peripherals

2.2 Product specifications

General Specifications				
Input rated voltage range ⁱ	115-127 V / 220-240 V			
Input operating voltage range ⁱⁱ , ⁱⁱⁱ , ^{iv}	70-140 V / 160-264 V			
Maximum input voltage ^v , ^{vi}	280 V			
Input frequency range	50-60 Hz			
Input rated current	8.3 A			
Control mode	Frequency, Drop-in and Serial			
Operating humidity	< 85%			
Environmental humidity ^{vii}	10% to 85%			
Operating ambient temperature ^{viii}	-20 °C to 55 °C			
Storage temperature	-20°C to 85°C			
Air forced ventilation (min) ^{ix}	2 m/s			
Ingress Protection Grade	IP55			

ⁱVoltage range approved by Agencies.

ⁱⁱMinimum voltage without impact on compressor starting performance.

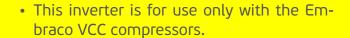
ⁱⁱⁱOpearating below the minimum voltage may limit the cooling capacity due to power and compressor speed limitation.

^{iv}Maximum voltage without impact on performance and long term reliability.

^vMaximum voltage without inverter being damaged, but with impact on reliability and performance.

^{vi}The inverter may be damaged with voltage above this limit.

vii Inverter shall be stored in an adequate environment to avoid condensation and oxidation of its parts.


viiiAgency approval temperature.

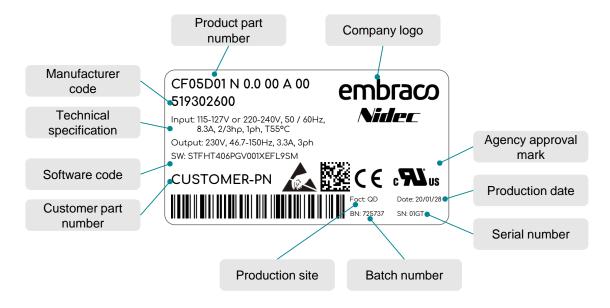
^{ix}Air flow over the inverter heat sink, as shown in Figure 3.15.

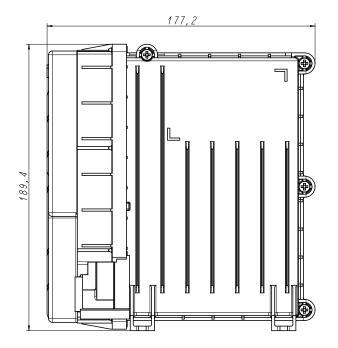
 Do not connect the CF05D Inverter to a power supply above declared Maximum Input Voltage.

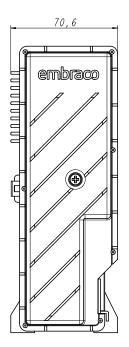
- Operating the product at voltages out of declared input operating voltage range may reduce its reliability and significantly impair product performance.
- Make sure to apply the proper match of Inverter SKU and compressor. The use of incorrect Inverter VCC may degrades product overall performance.
- In order to avoid loss of performance, make sure to operate the inverter inside the temperature range of -20 °C to 55 °C and forced ventilation air flow.
- An ambient operation temperature above 55 °C or an inappropriate positioning of the inverter related to forced ventilation air flow may activate inverter thermal protection.

2.2.1 Label information

The Figure 2.1 shows the product label description.




Figure 2.1: Product label example


2.2.2 Agency approval

Inverter Family	VDE	c FL ° us
CF05D	X	X

2.2.3 Product dimensions

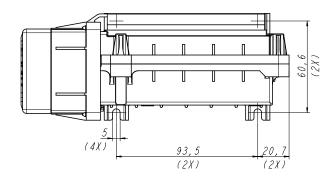


Figure 2.2: Stand alone dimensions (mm)

2.2.4 Connectors

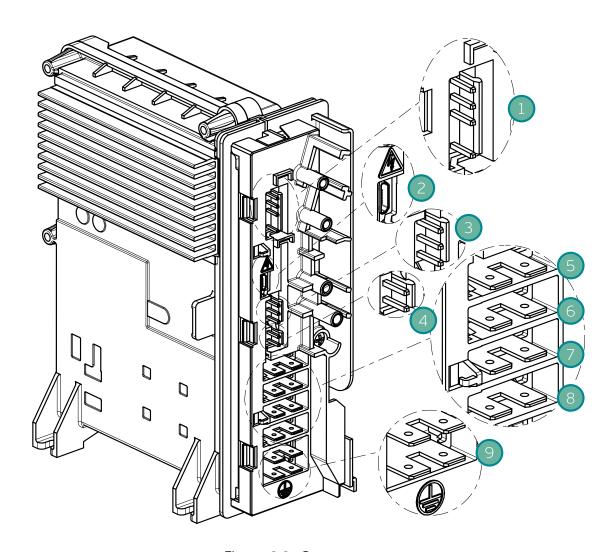


Figure 2.3: Connectors

	Connectors part numbers				
Indicator	Description	Part number	Insulation		
1	Motor cable *	_	_		
2	'You Control' input	Micro-USB B	_		
3	Serial communication	S3P-VH (LF) (SN)	Reinforced		
4	Frequency input	S2P-VH (LF) (SN)	Reinforced		
5	Defrost input	2 x Fast-on 6.3mm	Functional		
6	Drop in	2 x Fast-on 6.3mm	Functional		
7	Neutral or Line 2**	2 x Fast-on 6.3mm	_		
8	Line 1	2 x Fast-on 6.3mm	_		
9	Safety earth	4 x Fast-on 6.3mm	_		

 $[\]ensuremath{^{\star}}$ Compressor motor cable already assembled.

2.2.5 Cables

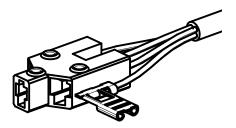


Figure 2.4: Compressor motor cable and earth for FMF compressor series

Cable Specification				
Indicator	Description	Part Specification	Color	
Figure 2.4	Compressor Motor Cable for UL	UL STYLE 2586 105°C 600 V	Black, Blue and Brown; Green/Yellow	
Figure 2.4	Compressor Motor Cable for IEC	HV05V2V2-F 90°C 300/500 V	Black, Blue and Brown; Green/Yellow	

^{**} Line-Line power supply.

The 'You Control' customization input (micro USB port) does not have electrical insulation. Use the provided communication modules defined by Embraco to guarantee electrical insulation. Check Subsection 4.2.1 for information regarding the indicated communication modules and product customization.

2.3 Information about input inrush current

Inrush current refers to a transient phenomenon that occurs rarely and only when the power supply cord is connected to the power grid or in the case of returning after power outages. CF05D inverter series are designed accordingly and can reliably withstand this current along the expected product lifespan. Excessive inrush current events may damage the inverter. Regarding inverter installation, Embraco recommends to have the appliance supply cord directly connected to inverter power input without any disconnection means. Please, contact Embraco Technical Support for any assistance or application assessment needed.

Inrush Specifications				
Voltage Range	120 V	240 V		
Allowed inrush events	1 per day	1 per day		
Inrush current (cold state)	24 A peak	37 A peak		
Inrush current (hot state)	80 A peak	160 A peak		
Input fuse melting (i²t)	631 A ² s	631 A ² s		

Chapter 3

INSTALLATION

3.1 Before you begin

- Make sure that CF05D Inverter will not be in direct contact with flames during assembly.
- The location where the Inverter will be installed must be protected against water jets.
- Do not open the Inverter enclosure. For installation, remove only the Inverter Cover to make the electrical connections.

- Before you begin your installation observe technical specifications and proper connections.
- To prevent damage to your inverter during and after assembly, avoid contacting with the following substances: Hydrocarbons, Ester based oils (e.g.: compressor oil), Phenols, Amines, Ketenes, Automotive fluids such as grease, except glycol and heavy alcohol.
- Inverter is sensitive to Electrostatic Discharges. The environment must be properly protected against ESD and workers that handle the inverter must be Earthed through adequate ESD wrist strap and wear ESD gloves.

- Take care with product handling until final assembly.
- Do not hold by the wiring.
- Special care must be taken to avoid mechanical impacts on the inverter during assembly process.
- Do not use the inverter if it drops during handling.
- Check if product is properly identified and if it's enclosure is without cracks.

3.1.1 Inverter cables arrangement

The CF05D inverter is supplied only with compressor motor cable, which has your own cord relief. The compressor motor cable is already assembled in the inverter. The input power cord, grounding and communication cables are not provided by Embraco. As shown in Figure 3.1, the CF05D has 5 cable paths and 2 cord anchorages dedicated to retain the system cables.

Inverter cables must be arranged according to the following instructions.

- 1. Remove the inverter cover.
- 2. Make the electrical connections and route the cables trought the cable path (see Figure 3.1).
- 3. Route all the cables trought the output (see Figure 3.1).
- 4. Screw the cord reliefes with torque of 1.0 Nm (± 0.2).
- 5. Reassemble the plastic cover fixing the screw with torque of 1.0 Nm (\pm 0.2).

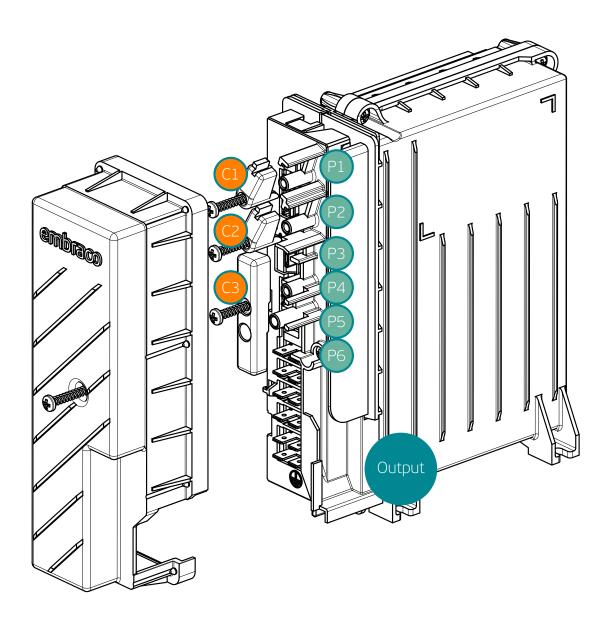


Figure 3.1: Cable paths and cord reliefs

Routing Description					
Cable path	Max cable width [mm]	Cord relief	Purpose		
P1	10,2	C1	Compressor motor cable (already assembled)		
P2	10,2	C2	Power supply cords		
P3	7,3	C3	Interconnection cords		
P4	5,7	C3	Interconnection cords		
P5	2,3	C3	EMI and/or Safety earth		
P6	8,5	C3	Interconnection cords		

- It is recommended the use of insulated female FASTON terminals in order to prevent any risk of short-circuit due to terminals bending.
- Avoid routing cables over the cord anchorage, otherwise the product may damage due to mechanical stress.
- The screws shown in Figure 3.1 must be fixed with torque of 1.0 Nm (±0.2).

NOTICE

- The approval of the input supply cables specifications and certifications as well as the cord anchorage interaction with the input cables is customer responsability.
- For appliance supply cord, it is recommended to apply cords with Phase and Neutral wires at least 40mm shorter than earth cable.

3.2 FMF compressor series description

- 1 Fence cover
- 2 Cord anchorage
- **3** Cord anchorage Screw
- 4 Compressor fence
- **5** Fence screw

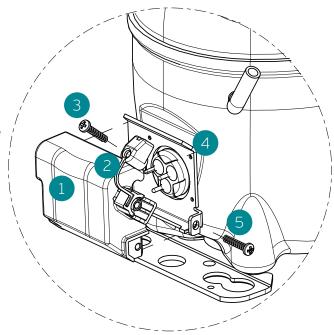


Figure 3.2: FMF compressor series description

3.2.1 Compressor cable connection

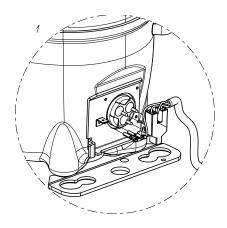


Figure 3.3: Step 1 - Connect the earth cable

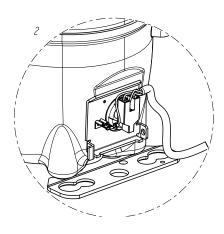


Figure 3.4: Step 2 - Connect the compressor motor cable

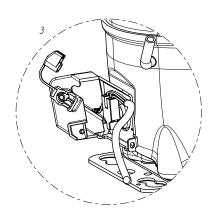


Figure 3.5: Step 3 - Connect the back corner of the cover

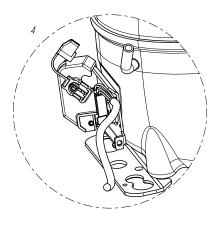


Figure 3.6: Step 4 - Assembly the fence cover

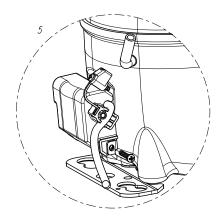


Figure 3.7: Step 5 - Screw the fence cover

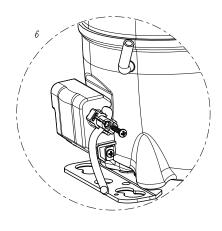
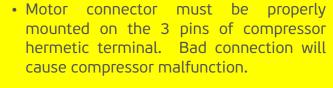


Figure 3.8: Step 6 - Screw the cord anchorage

To disassemble the fence cover, first remove the cord anchorage screw and then remove the fence cover screw.



- Before obtain access to connectors, disconnect the AC power supply.
- Avoid contact of the Control Input Cable (low voltage) with high voltage or power supply cables, due to electrical hazard and potential equipment damage.

NOTICE

 Before employing the inverter with compressor, refer to compressor technical documentation not covered in the inverter manual. In case of doubt, please, contact Embraco technical support.

- The screws shown in Figure 3.7 and Figure 3.8 must be fixed with torque of 1.0 Nm (±0.2).
- The handling of Inverter enclosure must be careful to avoid contact with the internal electronic board, in order to prevent possible electrostatic discharges.
- Make sure all necessary connections are properly done before connecting the Inverter to AC supply line.
- The electronic Inverter must be installed in the vertical position. Refer to Figures 3.9 till 3.14 for recommended assembling positions.
- When using Serial or Frequency communication mode the inverter has reinforced isolation. When using Drop-in mode the inverter has functional insulation.
- In order to avoid ESD discharge to the inverter circuit, insert the earth terminals at first.

3.2.2 Forced ventilation

Acceptable positions of fan + compressor + inverter are shown in the Figures 3.9 to 3.14.

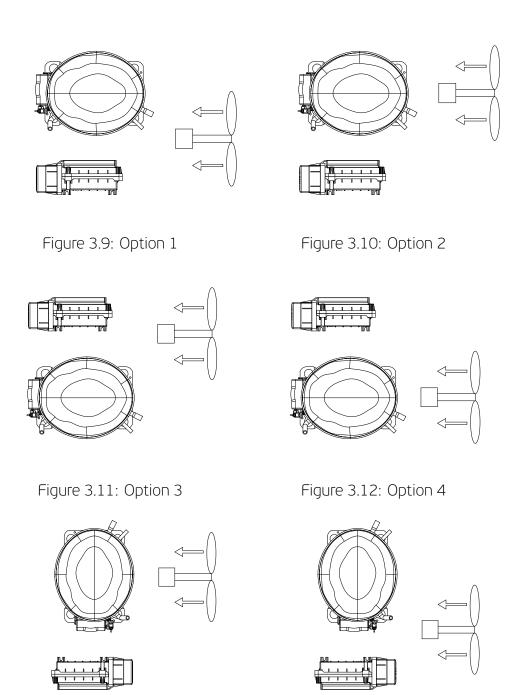


Figure 3.13: Option 5

Figure 3.14: Option 6

All mentioned positions are acceptable. Considering specific aspects as inverter and motor-compressor cooling, the most recomended are Options 1-2.

The acceptable air flow directions in the Inverter heat sink are shown in Figure 3.15.

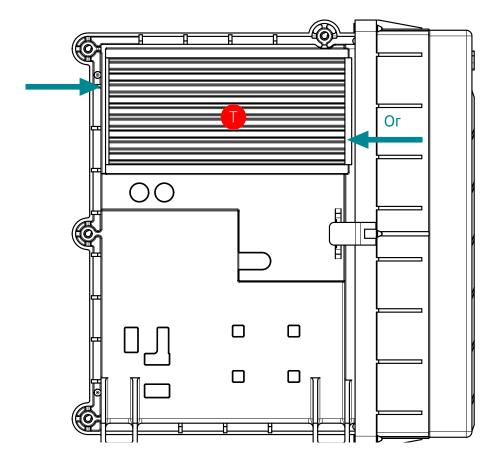


Figure 3.15: Inverter air flow direction

- In order to avoid loss of performance, make sure that the heat sink is not obstructed from the air ventilation.
- Maximum power is only achieved with minimum forced ventilation of 2 m/s over the inverter heat sink and 520 $\rm m^3/h$ air flow over the compressor.
- Distance from fan to compressor shell must be less than 30 cm.
- During the refrigeration system's development that will aplly the CFO5D inverter, it is recommended to measure the temperature T indicated with a red dot in Figure 3.15. The temperature at this point should never be higher than 75 ° C, even when the inverter is working with high power and it is subjected to high ambient temperatures.

3.3 Safety Recommendations of Electrical Installation

The Inverter shall be powered only in electrical installations with a ground fault circuit interrupter (GFCI) circuit breakers or residual current device (RCD), according to the country technical requirement.

In single-phase installations, the line phase wire must be protected by a circuit breaker. Furthermore, the line phase wire must be connected to the phase input connector of the inverter and the line neutral to the neutral input connector of the inverter.

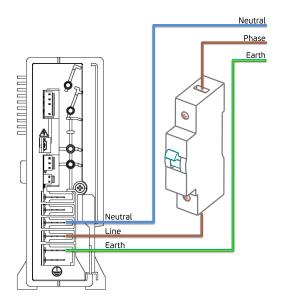


Figure 3.16: Phase-Neutral connection

In the case of two-phase installations, it must be used a 2-pole circuit breaker, because in case of a short circuit both phases of power supply are protected.

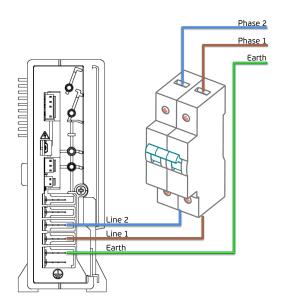
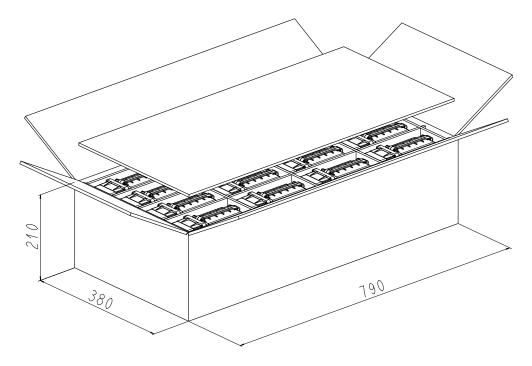


Figure 3.17: Phase-Phase connection



3.4 Package information

The inverters are delivered packed in a carton box. Box dimensions can be changed without previous information.

Storage Conditions		
Storage humidity	< 85%	
Storage ambient temperature	-40 °C to 85 °C	

Configuration	Quantity	Dimensions (mm)
Config #1	16	790 x 380 x 210

^{*}Dimensions are in mm.

Figure 3.18: Product package

3.4.1 Product discards

- Do not remove the inverter board from its case.
- Do not incinerate Embraco's inverter. Contact your local authorities, if you need to incinerate this product for disposal.
- Inverters should not be mixed with general waste.

NOTICE

- If you wish to discard this product, please contact your local authorities or dealer for the correct method of disposal, for proper treatment, recovery and recycling.
- The product package and its internal partitions are made of carton and can be disposed as recyclable waste.
- The inverter is RoHS compliant, nevertheless the correct disposal of this product will help to save valuable resources and prevent any potential negative effects on human health and the environment (e.g.: to avoid ground disperse) which could otherwise arise from inappropriate handling.

Chapter 4

OPERATION

The CF05D Inverter have support for Serial, Frequency and Drop-In communication modes.

NOTICE

- The inverter is assembled with all communication modes and the control mode is chosen automatically by the inverter.
- Output frequency and motor speed may have reduced range based on maximum working conditions of the respective compressor, not following some specific set point conditions. For detailed operating range of the selected compressor, please contact Embraco Technical Support.

4.1 Frequency control mode

In this operation mode the compressor speed is controlled through a frequency signal sent to the inverter. Usually this signal is provided by an electronic thermostat. The frequency signal is a digital square wave and its characteristics are described on Signal specification table and figure below.

Signal specifications			
Voltage range	-5 V to +15 V		
OFF state	-5 V to +0.7 V		
ON state	+4.5 V to +15 V		
Maximum duty-cycle	70%		
Minimum duty-cycle	30%		
Maximum current	15 mA @ 15 V		

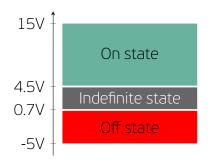
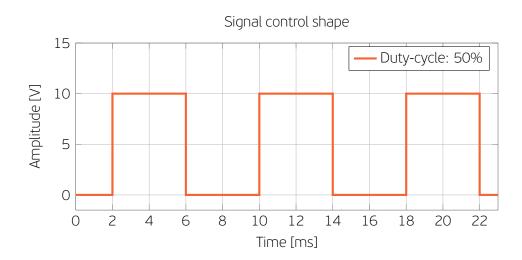
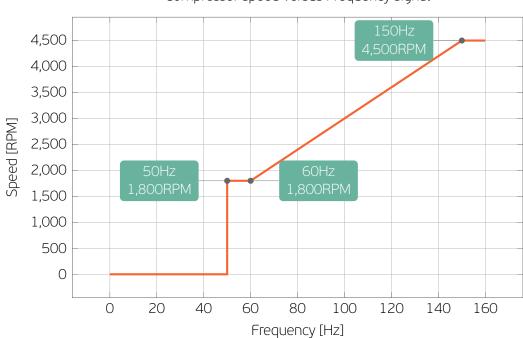



Figure 4.1: Signal levels for frequency control mode

From 0.7 V to 4.5 V the inverter behaviour is indefinite, therefore, it is not recommended to use signals within this range. The following figure presents a graphic example of an input frequency signal of 125 Hz sent to the inverter. The digital signal duty-cycle can vary in the range of 30% to 70%.


The compressor will follow frequency signal sent to the inverter according to the relation described on the following table and illustrated on the graph below.

Input Frequency Signal [Hz]	FMFcompressor - motor speed [RPM]]
0 - 50	0
50 - 60*	1800
60 - 150**	30 x Hz
>150	4500

^{*} For compressor models with minimum speed of 1400 RPM, the range of 36.6 - 46.7 is applied for minimum speed.

^{**} For compressor models with speed range of 1400-4500 RPM, the range of 46.7-150 is applied to define variable speed.

Compressor speed versus Frequency signal

The Figure 4.2 shows the electrical connections to perform frequency communication between an electronic thermostat and CF05D Inverter Control connector. For Frequency Control Mode, the input resistance is $1.2~\rm k\Omega$.

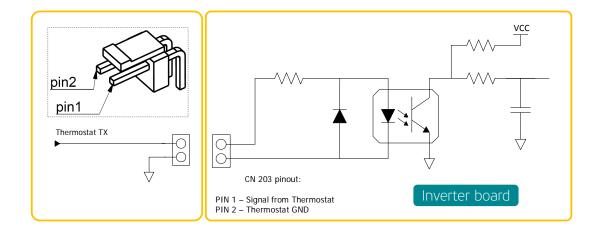


Figure 4.2: Electrical schematic of frequency communication

4.2 Drop-In control mode

The Drop-In mode is a CFO5D Inverter control mode, where single thermostat contact is used to set the compressor running conditions. Drop-In mode allows the application to any refrigeration system with a simple ON/OFF thermostat, without the need of a rotation control signal through serial or frequency communication. The compressor speed will be adjusted automatically by the Inverter, in accordance to the thermal load variation.

4.2.1 Smart Drop-In

The Smart Drop-In was designed with focus on cooling capacity, but always considering good system efficiency. This solution provides a customization tool that allows the routine to be parameterized and adjusted for each refrigeration system. The logic is divided in four mains parts: Pull-down, Stability Routine, Heavy Duty Routine and Defrost Routine. The Stability, Heavy Duty and Defrost Routine begin to run in parallel after Pull-down is completed.

First time Pull-down

Whenever the inverter is powered up, Drop-in is set to the pull-down state, where the compressor runs on the maximum allowed speed, generating more cooling capacity to reduce the pull-down time. This state is kept until thermal load reach stability.

Stability Routine

The stability cycling is the main routine of Smart Drop-in. This routine will select the best speed to run the compressor, in order to achieve the target cycle duration. The target duration is set by the system's manufacturer through the customization tool via computer.

Heavy Duty Routine

The heavy duty is a routine running on the background, that keeps checking the compressor's load to identify disturbances and exceptional cases of the system. Based on inverter electrical parameters variation, which represents the thermal load curve, it takes decisions of change or not the speed.

Defrost Routine

This routine is used for greater accuracy in detecting defrost, reducing the time of defrost (e.g. Hot-Gas) and accelerating the recovery in the post-defrosting (e.g. Hot-Gas and Heater).

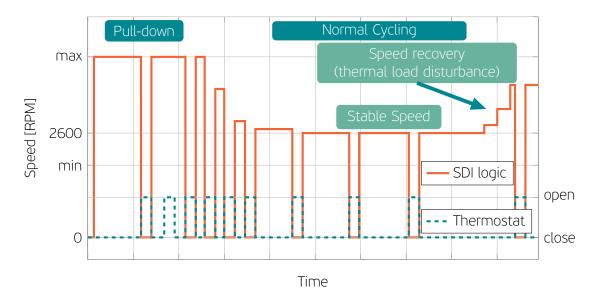


Figure 4.3: Compressor speed versus thermostat behavior Smart Drop-in

For more information, please access our website Embraco Smart Drop-in or contact our Application Engineer.

4.2.2 Defrost input (optional)

The Defrost input is an additional control signal for Drop-in logic, which allows the Inverter to improve the product performance by detecting when a defrost happened. For the Default Drop-in, the Defrost input sets the compressor at maximum capacity and keeps it for two cycles. The Drop-in input still defines the compressor state, i.e. on/off operation.

For the Smart Drop-in, the Defrost input will be compared to the Drop-in input to detect if appliance is operating with a Heater (resistance) or Hot-gas defrost, acting differently in each case. The logic sets the compressor at maximum capacity during a Hot-gas defrosts. In both cases, the post-defrost cycle is performed with higher speed, in order to recover the appliance temperatures. More information can be requested from our Application Engineer.

NOTICE

• The Drop-in input still defines the compressor state, i.e. on/off operation.

4.2.3 Drop-in connection

The Drop-In mode connection shall be wired according to Figure 4.4. This signal is usually called Thermostat Return Signal.

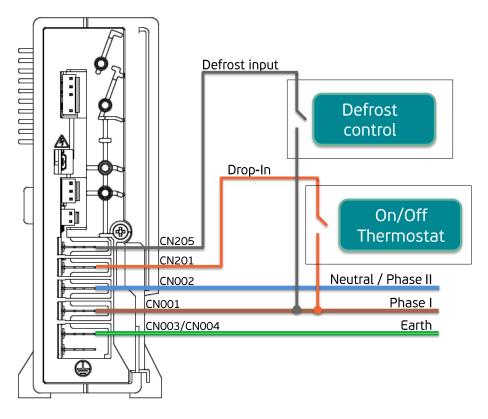


Figure 4.4: Drop-In connection

• When opened, the thermostat and defrost control impedance must be higher than 380 k Ω . Otherwise the compressor can run continuously, without ever turning off.

NOTICE

• All main parameters, such as minimum and maximum speed are described at compressor datasheet.

4.3 Serial control mode

This option is used when an electronic thermostat controls the CF05D Inverter uses a serial communication protocol. Based on Embraco protocol it is possible to define the compressor speed and check other parameters.

NOTICE

• Do not use the inverter serial communication while using the 'You Control' interface.

4.3.1 Serial specifications and Internal Circuit

The Serial Control mode has an isolated input stage provided by the usage of optocouplers. The circuit on Figure 4.5 shows the electrical connections to perform serial communication between an electronic thermostat and CF05D Inverter serial connector (CN204).

The input resistance for serial communication, shown in Figure 4.5, is 1.2 k Ω .

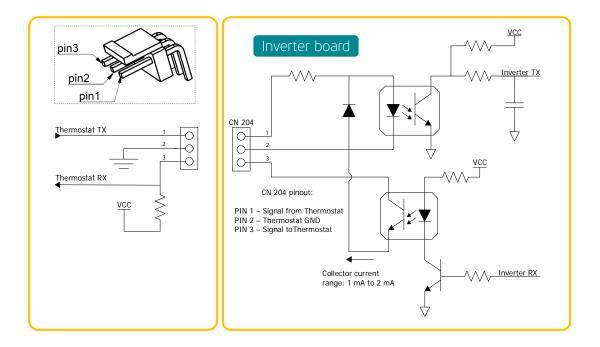


Figure 4.5: Electrical schematic of serial communication

To guarantee the correct functionality of serial communication, the signal to be sent to the inverter must be according to Figure 4.6.

Signal specifications			
Voltage range	-5 V to +15 V		
TRUE state	-5 V to +0.7 V		
FALSE state	+4.5 V to +15 V		
Maximum current	2 mA @ 15 V		

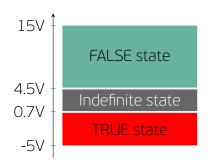
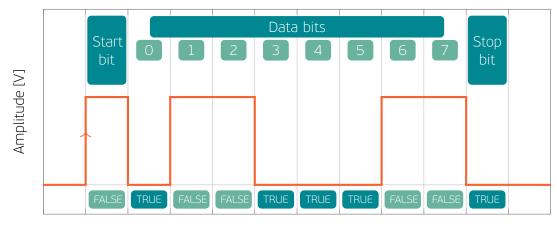



Figure 4.6: Signal levels for serial communication

Time

The identification byte (1st byte), is used for command synchronization. After inverter identifies a valid A5h, it starts to read the next 4 bytes. After reading, a response will be sent as indicated on "Receive commands structure" table. No response will be sent until the inverter recognizes a byte A5h. There is a time out of 2 seconds to receive the entire command after inverter identifies one A5h. After this time out, a new synchronization will start.

Basic specification				
Communication type	UART (Half-Duplex)			
Baud rate	600 baud			
Parity	None			
Flow control	None			
Unit size	5 Bytes			
Electronic thermostat	Host			
Inverter	Slave			

To perform serial communication between a computer (RS-232) and the CF05D Inverter serial connection, please contact Embraco Technical Support to receive instructions.

4.3.2 Commands

Command structure				
1st Byte	2nd Byte	3rd Byte	4th Byte	5th Byte
Identification (ID)	Command (CMD)	LSB*	MSB**	Checksum*** (CK)

^{*}Least significant Byte (LSB) of Data. Example: Data=ABCDh, thus Data low=CDh.

^{**}Most significant Byte (MSB) of Data. Example: Data=ABCDh, thus Data high=ABh.

^{***}Checksum=100h - (S14h AND OFFh), where S14h is the addition of Bytes 1 to 4.

Transmit commands structure					
Command	ID	CMD	LSB	MSB	CK
Set speed	A5h	C3h	Speed	[RPM]	CK
Read set speed	A5h	3Ch	80h	39h	CK
Read operation status	A5h	3Ch	83h	39h	CK
Read power	A5h	3Ch	82h	39h	CK
Read starting trials	A5h	3Ch	81h	39h	CK
Read bus voltage	A5h	3Ch	84h	39h	CK
Read temperature	A5h	3Ch	88h	39h	CK
Read power limitation	A5h	3Ch	8Ah	39h	CK

Receive commands structure					
Response to:	ID	CMD	LSB	MSB	CK
Set speed	5Ah	83h	Sta	tus*	CK
Read set speed	5Ah	80h	Speed	[RPM]	CK
Read operation status	5Ah	83h	Sta	tus*	CK
Read power	5Ah	82h	Powe	er [W]	CK
Read starting trials	5Ah	81h	Number	of trials	CK
Read bus voltage	5Ah	84h	Volta	ge [V]	CK
Read temperature	5Ah	88h	Temperatu	re [°C x 10]	CK
Read power limitation	5Ah	8Ah	Power lim	itation [W]	CK
Communication error	5Ah	Code**	FFh	FFh	CK

^{*}See Status Data table.

^{**}See Error Code table

Status Data				
H Bit	LSB	MSB	Description	
-	-	00h	Compressor running	
-	-	FFh	Compressor stopped (waiting for a valid start speed)	
0	01h	FFh	Start failure	
1	02h	-	Overload protection (Note 1)	
1	02h	FFh	Overload (Note 3)	
2	04h	FFh	Under speed (1550 rpm or lower)	
3	08h	FFh	Wrong rotor position	
4	10h	FFh	Short circuit	
5	20h	FFh	Over temperature failure (Note 6)	
7	80h	-	Set speed data out of specification (Note 2)	
7	80h	FFh	Set speed data out of specification (Note 4)	

Note 1: This response occurs when compressor is running with a high load. If the Data High byte is 00h, compressor is still running.

Note 2: Response to the out-of-spec set speed data received while the comp is running.

Note 3: This response occurs when compressor is stopped due to high load.

Note 4: Response to the out-of-spec set speed data received while the comp is stopped.

Note 5: When one or more errors occur, the corresponding bits "H" are set to 1.

Example: Overload and Under speed: 0xFF06

Note 6: The over temperature failure refers to when the inverter turns off due to the temperature overcoming 105°C, not to the temperature protection actuating.

Error Code		
Code	Еггог	
FOh	Error in 4th Byte	
F2h	Checksum error	
F4h	Command error	
F8h	Error in the 3rd Byte	

If compressor is stopped due to a failure (see Data Status table), it is possible to reset that failure sending a speed command to turn inverter off (0 rpm set speed). However, if nothing is done, the failure reset will occur after 8 minutes and then the compressor will try to restart. The following example shows a situation where the compressor speed is set at 2000 RPM.

Example: Set compressor at 2000 RPM

Step 1: select proper command

Command for selecting a speed is **Set speed**

 $ID \rightarrow A5h$

CMD \rightarrow C3h

Step 2: transform speed from decimal into hexadecimal base

2000d →07D0h

Step 3: split lower and higher Bytes

 $\mathsf{LSB} \to \! \mathsf{D0h}$

 $MSB \rightarrow 07h$

Step 4: calculate sum of first 4 Bytes

S14h=A5h+C3h+D0h+07h

S14h→23Fh

Step 5: boolean logic to maintain sum as 8-bit

L14h=0FFh AND S14h

L14h \rightarrow 3Fh

Step 6: calculate checksum

CK=100h-(0FFh AND S14h)=100h-3Fh

 $\mathsf{CK} = \rightarrow \mathsf{C1h}$

Command: A5h C3h D0h 07h C1h

 To avoid noise increasing and damages to the compressor due to mechanical resonance, some operating speeds are forbidden by software for all control modes.

NOTICE

- When one or more errors occur, the corresponding "H" bits are set to 1. Example:
 Overload and Under speed LSB →06h.
- The Frequency and Drop-In modes can have serial communication only for monitoring purpose. This functionality can be used for product diagnostic.

Chapter 5

DIAGNOSTICS

The CF05D Inverter has two diagnostics methods, by visual light emission using a LED indication, or by serial communication protocol.

5.1 LED indication

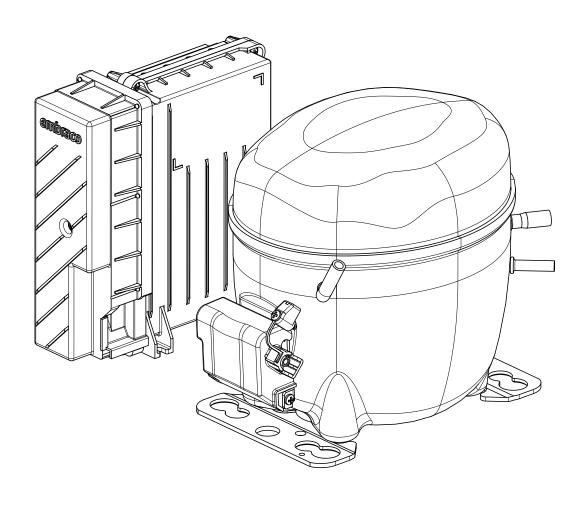
The LED diagnostics function helps services technicians to diagnose possible fault components by blinking a LED inside the box in different patterns. Basically, it indicates if there is a problem with Compressor, CF05D Inverter or Thermostat. The table below describes the failure modes.

LED Status	Period	Color	Description
1 Flash	30 seconds	Green	Normal operation
2 Flashes	5 seconds	Green	Communication problem
3 Flashes	5 seconds	Red	Inverter problem
4 Flashes	5 seconds	Red	Compressor problem
No Flash	_	_	No input power / Damaged inverter

5.2 Troubleshooting

The following tables show some possible problems and the best action to deal with them.

Compressor does not start			
Problem	Action		
Compressor disconnected from the inverter.	·Verify compressor cable connection.		
No AC power supply; or wrong voltage/terminals connected.	·Verify AC input cable connection and measure AC input voltage.		
No control signal input or bad connection.	·Verify control input cable connection and measure the signal from the thermostat.		
Blown fuse (due to previous major failure).	Return the unit to manufacturer, replacing it by new one.		
Open compressor motor winding.	·Measure winding for open circuit between all pair of pins on the hermetic terminal. If any winding is open, return compressor to manufacturer.		
Compressor with locked rotor (due to mechanical damage).	Replace compressor by new one and test for confirmation. Return damaged unit to manufacturer.		
Dropped, damaged, burnt inverter.	Replace by new one and test for confirmation. Return damaged unit to manufacturer.		
Inverter on waiting time after failed start.	·Wait the necessary time or reset the inverter disconnecting it from the AC power supply. The reset time is about 50s.		
Demagnetized rotor (only if compressor was previously connected directly to the AC power supply).	Replace compressor by a new one and test for confirmation. Return damaged unit to manufacturer.		
Unequaled pressures between discharge and suction pressures in the refrigerating system.	·Allow the Inverter to equalize pressure between suction and discharge sides.		
Low input voltage supplied to the inverter.	·Measure AC voltage to confirm.		



Compressor does not run at the selected speed			
Problem	Action		
High compression load, with compressor being subjected to a stall condition.	Review system design,refrigerant gas load or compressor capacity is not suitable for the application. If system is apropriated designed, speed will reach set value when load condition is stabilized.		
Compressor always on pulldown cycle for Drop-In Mode.	·In Drop-In mode, check if the inverter AC input is connected to thermostat output. Inverter AC input should be directly connected to AC power supply (see Drop-In mode schematic).		
No or incorrect control signal.	·Check if the appropriate control signal is being correctly applied to the Control Input Connection.		

DISCLAIMER

The CF05D Inverter is for use exclusively with the Embraco compressors. ALL PROD-UCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NO-TICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Embraco, its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Embraco"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Embraco makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Embraco disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Embraco's knowledge of typical requirements that are often placed on Embraco products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Embraco's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Embraco products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Embraco product could result in personal injury or death. Customers using or selling Embraco products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Embraco personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Embraco. Product names and markings noted herein may be trademarks of their respective owners. All rights reserved.

CONTACT

If after these instructions you still have doubts, please do not hesitate to contact our Application Engineer. www.embraco.com