

Position Paper Light Commercial Refrigeration

Refrigerants Outlook for United States and Canada 2021

www.embraco.com

етьгасо

Introduction

With the Kigali Amendment to the Montreal Protocol, the global community made another important step towards preserving our planet for future generations by reducing CO2 emissions due to human activities. The global phase-down of HFCs in the refrigeration sector represents an important contribution to international climate change mitigation efforts.

For many years, Embraco has been actively investing in this direction by developing and promoting hermetic compressors for use with lowatmospheric impact refrigerants on all continents. In addition to isobutane (R600a) in household appliances, significant progress has been made in integrating propane (R290) into light commercial plug-in systems as a natural alternative to R404A, as well as in the use of carbon dioxide in supermarket sector.

In the US, even though EPA rules on the subject have been suspended by the US courts for the time being, California and six other states have recently adopted HFC regulations limiting high global warming potential (GWP) substances in air conditioning and commercial refrigeration. All these developments point in a similar direction: the need to lower the GWP of the refrigerants in use without compromising the indirect CO_2 emissions during the lifetime of the equipment.

Canada is headed in the same direction with recently published new HFC rules imposing bans on high-GWP refrigerants for specific applications.

In Europe F-gas regulations have imposed progressive bans on certain high- GWP refrigerants for common refrigeration applications, as well as a "quota system" limiting the available quantities of HFC refrigerants on the market.

In addition to the natural refrigerants mentioned before, several alternative synthetic refrigerants have been developed by the chemical industry and more are coming. Embraco has performed extensive tests to assess the capacity of these alternatives to replace high-GWP refrigerants presently in use. The most difficulty was found in trying to replace R404A. This paper will summarize current testing for R404A and R134a replacements, with a focus on reliability and performances as well as the evolution of related safety legislation.

Embraco Policy Statement

- Embraco will encourage the use of low GWP refrigerants to support global effort to mitigate climate change.
- Embraco will continue to provide solutions to improve the energy efficiency of refrigeration equipment with low-GWP refrigerants.
- Embraco will support the proactive use of natural refrigerants without compromising appliance safety or technician training.
- Embraco will continue to develop products for both natural and synthetic low-GWP refrigerants that exceed present and future energy efficiency standards in order to assure the competitiveness of our products and expectations of our end users.
- Embraco will continue to work with international legislative bodies on the safe use of low-GWP refrigerant options.

Canada HFC Rules

On October 18, 2017, the Canadian government announced amendments to its existing Ozone-depleting Substances and Halocarbon Alternatives Regulations. The changes include a phase-down in bulk HFCs as well as prohibitions on HFCs in certain types of equipment as shown in Table 1.

 Table 1 Canada HFC Rules and Effective Dates

	GWP LIMIT	DATE
REFRIGERATION – CENTRALIZED SYSTEMS (MT/LT RACKS)	2200	2020
REFRIGERATION – CONDENSING UNITS	2200	2020
REFRIGERATION – LT STAND-ALONE	1500	2020
REFRIGERATION – MT STAND-ALONE	1400	2020
MOBILE REFRIGERATION	2200	2025
CHILLERS	750	2025

California HFC Rules

California is driving aggressive regulation at a state level by adopting vacated EPA Rules 20 and 21 and delisting high-GWPrefrigerants with a bill approved in August 2018 (Table 2). Several other states in the US Climate Alliance (24 states representing 50% of the US population and 57% of the country's GDP) have either already adopted (Washington, New Jersey, Vermont, Maryland, Colorado, New York) or are expected to adopt similar legislation very soon (Connecticut, Delaware, Maine, Hawaii, Massachusetts, Oregon, Rhode Island).

Table 2 California Delisted Refrigerants

DELISTED REFRIGERANT	APPLICATION	EFFECTIVE DATE
	Supermarket Systems	January 1, 2019
R404A*	Remote Condensing Units	January 1, 2019
UNACCEPTABLE	Stand-alone Retail Units Low Temp	January 1, 2020
	Refrigerated Food Processing and Dispensing Equipment	January 1, 2021
вотн	Stand-alone Retail Units Medium Temp <2200 BTU/h**	January 1, 2019
R404A* ^{AND} R134a	Stand-alone Retail Units Medium Temp ≥2200 BTU/h	January 1, 2020
UNACCEPTABLE	Vending Machines	January 1, 2019

California aims to cut the state's HFC emissions (now at about 20 million metric tons of CO₂e) by 50% as of 2030. To accomplish that, the state is using a multi-pronged approach. Regulations adopted by the California Air Resources Board (CARB) in 2018 incorporate former EPA rules and other programs. CARB is now introducing stricter regulations, including a 150-GWP cap for refrigeration systems with more than 50 lb of refrigerant; a 1500-GWP cap for those below 50 lb of refrigerant; and a ban on sales of virgin refrigerants with a GWP above a threshold of 1,500 by January 1, 2022, and a 750-GWP cap for stationary air conditioners by Jan 1, 2023.

EU F-Gas Regulation

The European Union was the pioneer in F-gas phasedown with the introduction of regulations (517/2014) limiting the use of refrigerants with high GWP values. Current EU deadlines for refrigerant use in new equipment include:

From January 1, 2020

- Hermetically sealed systems that contain HFCs with GWP of 2500 or more (e.g. R404A, R507A) are banned in refrigerators and freezers used for storage, display or distribution of products in retail and food service (commercial use).

From January 1, 2022

- Hermetically sealed systems that contains HFCs with GWP of 150 or more (e.g. R134a R407F, R407C, R410A, R448A, R449A, R452A) will be banned in refrigerators and freezers used for storage, display or distribution of products in retail and food service (commercial use).

From January 1, 2020

- Stationary refrigeration equipment that contains, or that relies upon for its functioning, HFCs with GWP of 2500 or more (except equipment intended for application design to cool products to temperatures below -50°C) are banned.

Alternative Refrigerants for Commercial Refrigeration

Embraco is working on products for the light commercial refrigeration segment that comply with present and future F-gas regulations, focusing mainly on products that meet final target limit (<150 GWP) with natural and with synthetic refrigerants, as well as compressors for transition refrigerants (150<GWP<2500), that should allow the industry to convert their products portfolio into low-GWP alternatives in the future. For the time being, only hydrocarbons can be considered a future-proof solution in selfcontained systems.

The use of larger charge systems, both with hydrocarbons and low-GWP synthetic refrigerants, will have to wait until current safety standards and codes (under development) have been updated. Every appliance producer has a choice to make: go natural within the present charge limitations or wait for new safety legislation. Table 3 lists the main criteria that should be taken in consideration when making this decision.

Table 3 Alternative Refrigerants for Commercial Refrigeration

	High GWP HFCs	HCs	Low GWP HFCs
SAFETY CLASS	A1 Not Flammable	A3 Highly Flammable	A2L Slightly Flammable
ENVIRONMENTAL IMPACT	Very High	Ultra Low	Low
REFRIGERANT COST	Ref	Lower	Very High
COMPRESSOR THERMAL REGIME	Ref	Lower	Higher
INVESTMENTS FOR SAFETY	Ref	Yes	Yes
SYSTEM EFFICIENCY	Ref	Much Higher	Higher
CHARGE LIMIT (UL471)	No	5,3oz	17,7oz

Future Proof Solutions - Hydrocarbons

PROPANE (R290)

Embraco offers a full product line of HC compressors that conform to the final limits set by the current F-gas regulation (up to 38cc). R290 is already widely in several commercial used applications and most of existing light commercial applications can be converted to use those refrigerants. In the case of larger applications, due to the general charge limit of 5.3 oz., multicircuit configuration is a feasible option and already applied in some systems. An important step will be modifying safety standards to allow wider use of A3 class refrigerants. Present EPA SNAP listings allow for 5.3 oz (150 g) of R290 or R600a charge for hermetically sealed applications in light commercial refrigeration.

At a global level, the new IEC standard (IEC60335-2-89), published in June 2019 allows up to 500 g (17.7 oz) of propane charge and 1.2 kg (2.64 lb) of A2L class refrigerants for self-contained commercial applications such as ice makers, with specific additional mitigation measures to maintain the same risk level as per the 150 g limit.

In most of the world, this new standard can already be applied (e.g., Brazil) but in the US and Europe it still must be firstly adopted by region/ country as part of existing safety standards and codes. Though activity is in progress, the conclusion is still unclear.

OTHER HYDROCARBONS: ISOBUTANE (R600a)

R600a - isobutane - represents a valid alternative solution for appliances. lt offers small benefits in terms of efficiency but has significant limitations in terms of cooling capacity. Due to its low specific cooling capacity, it requires bigger compressor displacement compared to other refrigerants and consequently, a larger and heavier compressor Isobutane's frame. properties can also limit the evaporating temperature range.

Embraco's catalog features a full range of products utilizing isobutane for LBP and HBP applications, including small chest freezers, bottle coolers and wine coolers.

Next Generation HFCs

R404A ALTERNATIVES

In the long term, the industry under the AHRI's AREP (Alternative Refrigerant Evaluation Program) has tested a series of new mixtures with GWP of less than 150. All these candidates are slightly flammable and belong to the A2L classification with temperature glide up to 22R. Tables 4 and 5 list some long-term alternatives to R404A that Embraco is testing for the light commercial segment. It is important for the refrigeration industry to avoid refrigerant proliferation. Hopefully market forces will help speed the adoption of a global standard.

One important step toward allowing wider use of A2L class refrigerants is the safety standards updates (the same applies to A3 safety class mentioned before).

Table 4 Alternative Blends Physical Data

	R 404A	R455A	R454C
ТҮРЕ	HFC blend	HFC blend	HFC blend
SAFETY CLASS	A1	A2L	A2L
BOILING TEMP @ 1atm	-53°F	-51°F	-49°F
CRITICAL TEMP	162°F	181°F	180°F
BUBBLE-DEW @14.5 PSIA	1.4R	22.3R	14.7R

Table 5 Embraco Evaluation Summary

	R 404A	R455A	R454C
GWP	3920	146	146
CAPACITY	Ref	Same	Lower
EFFICIENCY	Ref	Better	Better
RELIABILITY	Ref	Lower	Lower
LUBRICANT	POE	POE	POE
MOTOR TEMP	Ref	Higher	Higher
DISCHARGE TEMP	Ref	Higher	Higher

Next Generation HFCs

R134a ALTERNATIVES

R1234yf is a valid alternative for commercial systems because of R134a appliances, so Embraco its low specific cooling capacity. offers some compressor models Its use would require a completely with this refrigerant in its catalog. alternative to R134a for light

new product line that, at this R1234ze is not considered a valid stage, does not seem to be a solution for this market segment.

Table 6 Alternative Blends Physical Data

	R 134a	R1234yf	R1234ze (E)
ТҮРЕ	HFC	HFC	HFC
SAFETY CLASS	A1	A2L	A2L
BOILING TEMP @ 1atm	-15°F	-22°F	-2.15°F
CRITICAL TEMP	214°F	203°F	230°F
BUBBLE-DEW @14.5 PSIA	0R	0R	0R

Table 7 Embraco Evaluation Summary

	R 134a	R1234yf	R1234ze (E)
GWP	1430	Below 1	Below 1
CAPACITY	Ref	Slightly lower	Much Lower
EFFICIENCY	Ref	Lower	Lower
RELIABILITY	Ref	Same	NA
LUBRICANT	POE	POE	NA
MOTOR TEMP	Ref	Same	NA
DISCHARGE TEMP	Ref	Same	NA

HFC Transitional Solutions

R404A REPLACEMENT

То ease the transition to refrigerants that comply with target final GWP limits, the are chemical industry offers several considerably higher temperature alternatives to existing high-GWP HFC refrigerant blends. The most outline Embraco's evaluation of notable intermediate refrigerant the main physical proprieties of candidates are HFC blends like R448A, R449A and R452A.

They are all in safety class A1 (non-toxic, non-flammable) and characterized all by glide than R404A. Tables 8 and 9 these blends.

Table 8 Alternative Blends Physical Data

	R 404A	R448A	R449A	R452A
ТҮРЕ	HFC blend	HFC blend	HFC blend	HFC blend
SAFETY CLASS	A1	A1	A1	A1
BOILING TEMP @ 1atm	-53°F	-49°F	-51°F	-53°F
CRITICAL TEMP	162°F	183°F	180 °F	167°F
BUBBLE-DEW @14.5 PSIA	1.4R	11.3R	11R	6.8R

Table 9 Embraco Evaluation Summary

	R 404A	R448A	R449A	R452A
GWP	3920	1386	1397	2140
CAPACITY	Ref	Better	Better	Same
EFFICIENCY	Ref	Better	Better	Same
RELIABILITY	Ref	Lower	Lower	Same
LUBRICANT	POE	POE	POE	POE
MOTOR TEMP	Ref	Higher	Higher	Same
DISCHARGE TEMP	Ref	Higher	Higher	Same

HFC Transitional Solutions

Both R448A and R449A were approved as an alternative refrigerant to R404A for the NE/ NT/NJ compressor series (ECN R449A 2018, ECN R448A 2019 and ECN LBP R448A/R449A), but with a more restricted operating envelope than R404A due to the higher internal thermal level of the compressor.

The restricted envelopes for R448A/R449A are presented in Figure 1 and Figure 2.

Тс

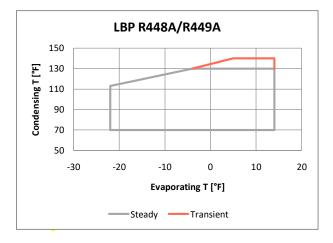

150 140 130 120 110 100 90 80 0 10 20 30 40 50 60

Fig.1 Restricted MBP R448A/R449A Envelope (max. return 68°F)

If an application is using an Embraco R404A compressor outside of this above-mentioned restricted envelope, please contact Technical Support for further instructions on how to adjust the thermal level of the compressor. R452A presented the same or lower thermal profile when compared with R404A. R452A can be considered as an alternative for the Embraco R404A product line (ECN R452A 2016) with same operating envelope of R404A, but because of EPA SNAP listings, its use in the US is limited to remote systems and refrigerated transport.

Operation Condition Transient Condition

- Tc Condensing Temperature °F
- Te Evaporating Temperature °F

In addition, customers always have the option of converting systems from R404A to R134a during the transition period just by changing compressor models and relative system design adjustment.

HFC Transitional Solutions

R134a REPLACEMENT

stage as an acceptable lower

Both proposed alternative blends GWP replacement refrigerant for mentioned below (R450A and R134a systems (see ECN R513A R513A) can be considered at this R450A 2017 and ECN CR/2966/ en-18/10).

Table 10 Alternative Blends Physical Data

	R134a	R450A	R513A
ТҮРЕ	HFC	HFC blend	HFC blend
SAFETY CLASS	A1	A1	A1
BOILING TEMP @ 1atm	-15°F	-11°F	-20°F
CRITICAL TEMP	214°F	223°F	208°F
BUBBLE-DEW @14.5 PSIA	0R	0,9R	1.4R

Table 11 Embraco Evaluation Summary

	R134a	R450A	R513A
GWP	1430	547	573
CAPACITY	Ref	Lower	Same
EFFICIENCY	Ref	Same	Same
RELIABILITY	Ref	Same	Same
LUBRICANT	POE	POE	POE
MOTOR TEMP	Ref	Same	Same
DISCHARGE TEMP	Ref	Same	Same

Warning

Warning Statement About Use of Flammable Refrigerants (A2L, A3) with Embraco Compressors, approved for A1 Safety Class Refrigerants (R134a, R404A, etc.) Embraco is currently producing hermetic compressors for use with A3 and A2L refrigerants to replace high-GWP HFCs. However, it is important to note that:

1.

Embraco compressors designed and approved for non-flammable refrigerants (A1 class), **cannot be used** with any type of flammable refrigerants, including both A3 and A2L class refrigerants.

2.

Until new charge limits are adopted under the relevant standards, present regulations allow the use of up to 5.3 oz (150 g) of A3 safety class flammable refrigerant per refrigeration circuit.

3

Given the above-mentioned charge limitations and considering that all flammable refrigerants require the same design, manufacturing, and maintenance precautions, we strongly recommend the use of an HC solutions wherever technically possible.

4.

Embraco offers a full portfolio of compressor models for R290, the refrigerant considered the best option for both systems with a 5.3 oz (150g) charge limit as well as those where new charge limits are already in force.

5.

Embraco declines any responsibility for compressors used without approved refrigerants, and warns that potential reliability issues, such as motor overheating and electrical component malfunction, could occur with the use of unauthorized refrigerants.

glide have to be treated used. differently than in the past. A dew point pressure approach cannot be used to define actual

Performance It is important to consider that system operating conditions: a Evaluation refrigerants with significant mid-point approach should be

Conclusions Hydrocarbons (isobutane-R600a and propane-R290) represent the best long-term solution for both low and medium pressure light commercial self-contained applications. Expected safety legislation changes will remove some of the existing roadblocks related to charge limits for flammable refrigerants. As for the transition period, R448A and R449A mixtures can be used on specific Embraco R404A series with restricted envelope (see ECN R448A 2019, ECN R449A 2018 and ECN LBP R448A/R449A). R452A can also be considered as

an alternative (see ECN R452A 2016) but only for transport and remote applications in the US.

R513A and R450A are approved as alternatives to R134a for use during the transition period in specific Embraco R134a series (see ECN R513A R450A 2017 and ECN CR/2966/en/18/10). R1234yf is also an acceptable alternative for R134a also for the long term, but due to its flammability, can be used only with specifically designed models.

	CURRENT REFRIGERANT	TEMPORARY SOLUTION	FUTURE PROOF SOLUTION
Embraco Approved Refrigerant	R404A	R452A**	R290*
	R507	R407C	R455A
Under Approval Process		R448A***	R454C
■Not Approved		R449A***	R7 44
		R134a*	
* different displacement			
**only remote and transport			
***with restricted envelope	D / 0 /		

R134a	R134a	R1234yf
	R513A	R600a*
	R450A	R290*
		R744

General Trends

Light Commercial Segment from Embraco's Prospective

	LIGHT COMMERCIAL REFRIGERATION				
	WATT	150 - 5000			
	REGION/YEAR	TODAY	2022	2025	
HC	AMERICA				
	EUROPE				
	JAPAN				
	CHINA				
	REST OF THE WORLD				
HIGH GWP HFC's	AMERICA				
	EUROPE				
	JAPAN				
	CHINA				
	REST OF THE WORLD				
LOW GWP HFC's	AMERICA				
	EUROPE				
	JAPAN				
	CHINA				
	REST OF THE WORLD				
CO2	AMERICA				
	EUROPE				
	JAPAN				
	CHINA				
	REST OF THE WORLD				

- MAIN REFRIGERANT
- REGULAR USE
- NICHE USE
- NOT CLEAR

www.embraco.com