Índice

1.0	-	Introdução	2
2.0	-	Equipamentos, Componentes e Ferramentas Recomendáveis para Instalação	2
3.0	-	Preservação do Meio Ambiente	3
4.0	-	Noções Básicas de Instalação	3
5.0	-	Fluxograma de Instalação.	4
6.0	-	Limpeza do Sistema	5
7.0	-	Recomendações para a Brasagem (soldagem) do Sistema	6
8.0	-	Detecção de Vazamentos	7
9.0	-	Evacuação do Sistema	7
10.0	-	Procedimento para Carga de Fluido Refrigerante	8
11.0	-	Tubulações	9
12.0	-	Pump down - Ciclo de Parada com Recolhimento de Refrigerante10	0
13.0	-	Acessórios Básicos de um Sistema de Refrigeração10	0
14.0	-	Ligações Elétricas	4
15.0	-	Partida (Start up)10	6
16.0	-	Verificação de Contaminação	7
17.0	-	Outros Esclarecimentos	7

1.0 - Introdução

As seguintes instruções são gerais, porém incluem os principais pontos que devem ser considerados para a correta e segura instalação do produto, assegurando o bom desempenho e garantia do equipamento.

Atenção: Os sistemas de refrigeração são circuitos pressurizados, sendo de extrema importância que a remoção e instalação das Unidades Condensadoras seja feita somente por pessoas tecnicamente capacitadas, com conhecimentos dos equipamentos e procedimentos utilizados.

Antes de iniciar o procedimento de troca, certifique-se qual a real causa de defeito do sistema de refrigeração, evitando custos adicionais de mão-de-obra e materiais.

2.0 - Equipamentos, Componentes e Ferramentas Recomendáveis para Instalação

- 2.1 Bomba de alto vácuo
- 2.2 Vacuômetro
- 2.3 Detector de vazamentos compatível com o fluido refrigerante utilizado no sistema ou sabão, pincel e recipiente para fazer espuma
- 2.4 Balança de precisão
- 2.5 Cilindro com escala graduada
- 2.6 Visor de líquido e filtro secador instalados na linha de líquido
- 2.7 Aparelho e acessórios para recolher a carga de refrigerante usado
- 2.8 Vareta de solda prata e/ou foscoper
- 2.9 Fluxo para solda
- 2.10 Equipamento de solda
- 2.11 Ferramentas básicas (alicate universal, chave de fenda, etc.)
- 2.12 Registro de linha e/ou engate rápido

- 2.13 Analisador de pressão (manifold)
- 2.14 Instrumentos de medição elétrica (ohmímetro/alicate amperímetro)
- 2.15 Medidor de temperatura

3.0 - Preservação do Meio Ambiente

Para preservar as condições de vida no planeta em que vivemos, recomendamos que seja evitada a liberação de fluidos refrigerantes (CFC/HCFC) para a atmosfera.

Nos procedimentos de troca, antes de remover o compressor/unidade condensadora defeituosa, remova a carga de refrigerante usando o procedimento correto, recolhendo e reciclando ou neutralizando estes produtos.

Para isso, procure informar-se no seu fornecedor quais os procedimentos que devem ser seguidos.

4.0 - Noções Básicas de Instalação

O local de instalação deve ser bem ventilado, garantindo que haja fluxo suficiente de ar através do condensador. (Ver figura 1)

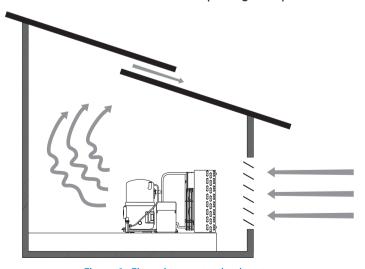


Figura 1: Fluxo de ar natural pelo teto.

Se o fluxo de ar no condensador for restringido (bloqueio parcial) o rendimento do sistema será drasticamente reduzido.

As unidades condensadoras Embraco Aspera são configuradas para operação em uma temperatura ambiente de no máximo 43°C. Portanto, certifique-se de que a temperatura do local de instalação não ultrapasse o limite recomendado.

Figura 2: Instalação em ambientes fechados.

Aviso: Não permitir que haja recirculação de ar no condensador. Em caso de instalações em ambientes fechados, deve-se prever e utilizar um meio de exaustão. (Ver figura 2)

Atenção: Deve-se proceder a limpeza periódica do condensador, para que as impurezas não prejudiquem ou bloqueiem a circulação de ar.

5.0 - Fluxograma de Instalação

- 5.1 Selecionar e dimensionar os equipamentos necessários para a montagem do sistema de refrigeração de acordo com as especificações de projeto (tubulações, válvulas, acessórios, unidade condensadora).
- 5.2 Antes de fazer as conexões das tubulações com evaporadores e unidades condensadoras, faça o teste de vazamento nas tubulações de líquido e sucção.
- 5.3 Proceder a solda das tubulações. Após soldar as conexões das tubulações com a unidade condensadora e evaporadores, fazer novo teste de vazamento. (Ver item 8)

- 5.4 Começar a evacuação de todo o sistema. (Ver item 9)
- 5.5 Após o vácuo, fazer a carga adicional de óleo ao sistema, se necessário.
- 5.6 Proceder a carga de refrigerante preferencialmente na forma líquida, e pela massa (ka) necessária de aás refrigerante. (Ver item 10)
- 5.7 Ligar a unidade condensadora e analisar o sistema, monitorando as pressões de baixa e alta, temperatura da linha de sucção e líquido. Completar a carga de refrigerante se necessário.
- 5.8 Quando a temperatura do interior do sistema de refrigeração (câmara, ambiente condicionado) se aproximar do valor de projeto, proceder ao ajuste final do sistema para regime permanente em carga máxima.
- 5.9 O superaquecimento no evaporador (encontrado pela diferença entre a temperatura na superfície da tubulação no ponto onde o bulbo da válvula de expansão está fixado, e a temperatura de evaporação*) deve situar-se entre 5°C e 10°C. O superaquecimento na entrada do compressor deve ser de 10°C a 15°C, neste caso, encontrado pela diferença entre a temperatura na superfície do tubo de retorno a 150 mm do compressor, e a temperatura de evaporação. O subresfriamento no condensador deve estar entre 3°C e 10°C, ou seja, temperatura de condensação menos temperatura na superfície do tubo na saída do condensador. *temperatura de evaporação obtida da conversão da pressão de sucção em temperatura.

É importante que todos os itens sejam acompanhados conforme manual de instalação para o correto funcionamento da Unidade Condensadora e conseqüentemente do Sistema de Refrigeração. Portanto a leitura do manual é de extrema importância para a correta instalação e operação dos equipamentos.

6.0 - Limpeza do Sistema

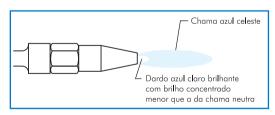
A limpeza do sistema é obrigatória para remoção total dos resíduos e outros contaminantes.

O procedimento de limpeza de uma Instalação poderá ser feito pela passagem de R-141b ou Vertrel XF. Recomenda-se a instalação de um filtro secador na linha de sucção para retenção e filtragem das impurezas.

7.0 - Recomendações para a Brasagem (soldagem) do Sistema

Circular nitrogênio (N₂) através da tubulação, com pressão interna de 1 a 2psig, para evitar oxidação ou formação de "carepa" assegurando que a tubulação esteja isenta de qualquer contaminante (óleos, graxas, óxidos).

Utilizar um pano úmido na soldagem de válvulas, conexões e tubos, evitando o superaquecimento do componente através da propagação de calor.


O compressor e filtro secador são extremamente suscetíveis à umidade. Portanto, devem ser abertos somente na hora da instalação, levando sua exposição ao máximo de 10 minutos ao ar atmosférico.

Evitar que os tubos a serem brasados fiquem tensionados.

Use vareta de solda compatível com os materiais a serem brasados.

Material	Tipo Solda
Cobre / Cobre	Foscoper
Ferro / Cobre	Prata

Regule a chama de acordo com os tipos de materiais a serem brasados. Vide recomendações a seguir.

Passadores de cobre com tubos de cobre - chama neutra, iguais quantidades de oxigênio e acetileno.

Passadores de cobre com tubos de aço - chama redutora ou carburante, maior quantidade de acetileno ou gás.

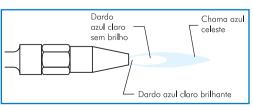


Figura 3: Recomendações da chama.

8.0 - Detecção de Vazamentos

Durante os procedimentos de verificação de vazamentos no sistema, nunca pressurize a tubulação utilizando ar, oxigênio ou acetileno. Há risco potencial de chama e/ou explosão.

Depois da completa instalação, pressurize o sistema a uma pressão em torno de 100psig (não utilizar pressões superiores a 150psig para não danificar o pressostato de baixa) usando nitrogênio e/ou uma pequena carga de refrigerante.

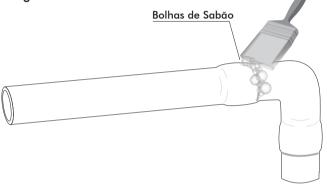


Figura 4: Teste de vazamento com bolhas de sabão.

Verifique os vazamentos usando um detector eletrônico ou um detector hálide (lamparina) ou uma solução de água e sabão. Quando todas as conexões estiverem corretamente instaladas, despressurize o sistema e prossiga para o próximo passo.

9.0 - Evacuação do Sistema

Atenção: Nunca utilizar o próprio compressor para fazer a evacuação do sistema, tão pouco aplicar tensão no compressor enquanto estiver sob vácuo, pois ocasionará a queima do compressor.

Para evacuar o sistema utilize uma bomba de alto vácuo e um vacuômetro. O sistema deve ser evacuado até 200 Hg (microns de mercúrio) ou menos. Mas sempre com um mínimo de 20 minutos de vácuo.

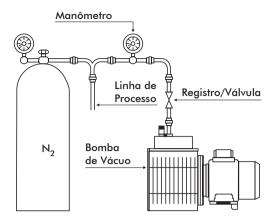


Figura 5: Bomba de alto vácuo para evacuação do sistema.

Atenção: Não utilize elementos anti-congelantes (álcool metílico e derivados), pois causam danos irreparáveis ao sistema de refrigeração.

10.0 - Procedimento para Carga de Fluido Refrigerante

Somente deve ser injetada a carga de refrigerante após constatado vácuo adequado, e conferir na etiqueta do compressor/unidade condensadora qual o tipo de refrigerante utilizado para se carregar o sistema. Fazer a quebra do vácuo com o compressor desligado.

Recomenda-se que a carga de gás seja dada em forma líquida (com o compressor desligado), pelo lado de alta (válvula tanque de líquido) e pela massa (kg) de gás, de acordo com o projeto do sistema.

Deve-se aguardar um período de 15 minutos para ligar o sistema, a fim de permitir a distribuição do gás e equalização de pressões.

O ajuste fino da carga deve ser realizado com o sistema em funcionamento (compressor ligado) através da observação do visor de líquido. A carga estará completa quando não houver mais formação de bolhas.

11.0 - Tubulações

As tubulações devem ser dimensionadas de maneira que:

- 11.1 Sejam flexíveis, a fim de evitar o rompimento pela dilatação e a transmissão de vibrações e ruídos causados principalmente pelos compressores.
- 11.2 Assegurem boa distribuição do fluido refrigerante pelo(s) evaporador(es) e evitem o retorno de liquido ao compressor. Para isto utilizar válvula de expansão corretamente dimensionada e um sifão invertido na saída de cada evaporador.

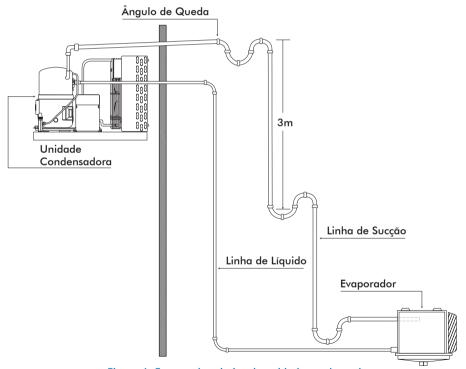


Figura 6: Evaporador abaixo da unidade condensadora.

11.3 - Evitem retorno de líquido ao compressor nos momentos de parada do sistema quando o(s) evaporador(es) estiver(em) situado(s) acima da Unidade Condensadora, utilizando um sifão invertido conforme figura acima.

- 11.4 Auxiliem o arraste de óleo lubrificante provenientes do(s) evaporador(es) nos sistemas onde a Unidade Condensadora esteja situada a uma altura superior a 3 metros do(s) evaporador(es), utilizando um sifão invertido a cada 3 metros de tubulação.
- 11.5 Permitam operações secundárias, como conexões de instrumentos de medição, isolamento de trechos para manutenção e recolhimento do refrigerante (pump down).

Aviso: O diâmetro das conexões das unidades condensadoras e dos evaporadores não poderão servir de parâmetro para a seleção dos diâmetros do restante do sistema.

12.0 - *Pump down* - Ciclo de Parada com Recolhimento de Refrigerante

O termostato instalado no sistema de refrigeração é responsável pelo acionamento da válvula solenóide, que está instalada na linha de líquido do lado de alta. Observe as posições dos equipamentos na figura 7. No momento em que a temperatura diminuir até o ponto de desligamento do termostato, a válvula solenóide fechará, fazendo com que a pressão do lado de baixa diminua, succionando o refrigerante do evaporador.

A pressão diminuirá até o setpoint do pressostato, que desligará o compressor para sua segurança, que não deve funcionar em vácuo. Este procedimento assegura que boa parte do líquido presente no evaporador retorne para a unidade, desta forma este processo representa a maneira mais eficaz de parada do equipamento.

13.0- Assessórios Básicos de um Sistema de Refrigeração

13.1 - Filtro Secador

Instalado na linha de líquido, sua função é reter as impurezas e principalmente retirar a umidade residual do sistema.

13.2 - Visor de Líquido

Instalado na linha de líquido após o filtro secador, é usado para visualizar a carga de refrigerante do sistema, sendo que alguns modelos permitem também detectar a presença de umidade.

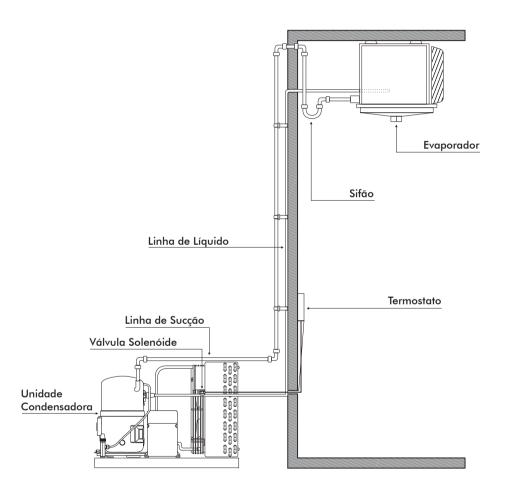


Figura 7: Esquema geral de instalação.

13.3 - Válvula Solenóide

Instalada na linha de líquido antes da válvula de expansão. É um acessório indispensável para o procedimento de *pump down*. Pode ser visualizada na figura 7.

13.4 - Válvula de Expansão

Instalada na linha de líquido antes do evaporador, sua função é manter uma diferença de pressão entre o condensador e evaporador e regular a passagem de refrigerante para o evaporador. Para sistemas que operam em baixas temperaturas (abaixo de -20°C) recomenda-se utilizar uma válvula de expansão com MOP (máxima pressão de operação) para proteger o compressor contra altas pressões na sucção no momento da partida.

13.5 - Acumulador de Sucção

Instalado na linha de sucção antes do compressor, evita o retorno de refrigerante líquido para o compressor.

Condições que favorecem o retorno de líquido para o compressor, onde é recomendável a aplicação do acumulador de sucção:

- Sistemas com mais de um evaporador;
- Altas cargas de fluidos refrigerantes;
- Operações com degelo a gás quente;
- Onde a distância do evaporador supera 15 metros.

13.6 - Filtro de Sucção

Recomendado para a limpeza de sistemas, nos quais o compressor foi queimado. Instalado na linha de sucção, sua principal função é a retenção das contaminações (resultantes da queima de compressor) e filtragem das impurezas do sistema.

13.7 - Aquecedor de Cárter

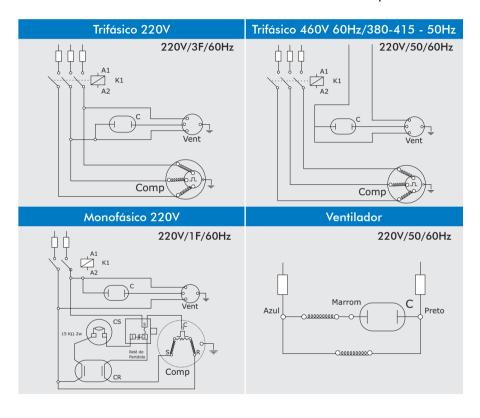
Sua principal função é vaporizar o refrigerante líquido presente no compressor. O refrigerante líquido pode prejudicar a lubrificação do compressor e provocar golpe de líquido. É utilizado em sistemas que possuem altas cargas de fluido refrigerante, baixa temperatura de evaporação (-20°C), degelo a gás quente ou sob condições de baixa temperatura ambiente.

Aviso: No acionamento ou após um período prolongado sem funcionar, o aquecedor de cárter deve ser energizado por pelo menos 12 horas antes da partida. Durante a operação normal, o aquecedor deve estar permanentemente energizado.

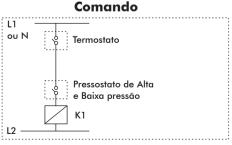
13.8 - Pressostato de Alta/Baixa

As unidades condensadoras Embraco Aspera são equipadas com pressostatos de Alta/Baixa. Sua função é proteger o compressor de operar com níveis de pressão fora da faixa aplicação.

Regulagem do pressostato de Alta:


Gás Refrigerante	R 22	R 404A
Pressão de Ajuste (psig)	360	400

Regulagem do pressostato de Baixa:


Ajustar o corte de segurança para o mínimo de 2psig (0,1bar).

14.0 - Ligações Elétricas

Conecte todos os acessórios elétricos aos terminais do compressor.

F	Fusível
С	Capacitor do ventilador
CS	Capacitor de partida
CR	Capacitor de marcha
K1	Chave contatora
A1/A2	Bobina do contator
L1/L2/L3	Fases da rede
Ν	Neutro
	Protetor térmico

Atenção: Alimentação conforme tensão nominal do contator.

Verifique todas as conexões e terminais e certifique-se que estão corretamente instaladas.

Atenção: O aquecedor de cárter deve ser energizado continuamente.

Verifique se os componentes elétricos estão especificados conforme a tabela abaixo.

	Power (HP)	Modelo	Código	Gás Refrigerante	Compressor	Tensão	Motor	Relé	Capacitor de Partida (µF/volts)	Capacitor de Funcionamento (µF/volts)
	1,5	UH 23B193 1	515800001	R 22	H23B193ABCA	208-230V/60Hz 1~	CSR	GE 3ARR3T10S3	88-108/250V	25/370
	1,5	UH 23B20Q 1	515800002	R 22	H23B20QDBDA	208-230V/60Hz - 200-220V/50Hz 3 \sim	3PH	-	-	-
	2	UH 23B243 1	515800003	R 22	H23B243ABCA	208-230V/60Hz 1~	CSR	GE 3ARR3T24P3	88-108/250V	35/370
	2	UH 23B243 1	515800004	R 22	H23B243DBDA	208-230V/60Hz - 200-220V/50Hz 3 \sim	3PH	-	-	-
	2,5	UH 23B303 1	515800005	R 22	H23B303ABCA	208-230V/60Hz 1~	CSR	GE 3ARR3T24P3	88-108/250V	40/370
	2,5	UH 23B30Q 1	515800006	R 22	H23B30QDBDA	208-230V/60Hz - 200-220V/50Hz 3 \sim	3PH	-	-	-
	2,5	UH 23A323 1	515800007	R 22	H23A323DBEA	460V/60Hz 380-415V/50Hz	3PH	-		-
	3	UH 23A383 1	515800008	R 22	H23A383ABCA	208-230V/60Hz 1~	CSR	GE 3ARR3T4A3	145-175/250V	35/440
НВР	3	UH 23A383 1	515800009	R 22	H23A383DBLA	200-230V/60Hz - 200-220V/50Hz 3~	3PH	-	-	-
	3	UH 23A383 1	515800010	R 22	H23A383DBEA	460V/60Hz 380-415V/50Hz	3PH	-	-	-
	3,5	UH 23A423 1	515800011	R 22	H23A423ABCA	208-230V/60Hz 1~	CSR	GE 3ARR3T4A3	145-175/250V	40/440
	3,5	UH 23A423 1	515800012	R 22	H23A423DBLA	200-230V/60Hz - 200-220V/50Hz 3~	3PH			-
	3,5	UH 23A423 1	515800013	R 22	H23A423DBEA	460V/60Hz 380-415V/50Hz	3PH	-		-
	4	UH 23A543 1	515800014	R 22	H23A543DBLA	200-230V/60Hz - 200-220V/50Hz 3~	3PH	-		-
	4	UH 23A543 1	515800015	R 22	H23A543DBEA	460V/60Hz 380-415V/50Hz	3PH	-		-
	5	UH 23A623 1	515800016	R 22	H23A623DBLA	200-230V/60Hz - 200-220V/50Hz 3~	3PH			-
	5	UH 23A623 1	515800017	R 22	H23A623DBEA	460V/60Hz 380-415V/50Hz	3PH	-		-
	3	UL 63A113 1	515800021	R 404A	L63A113DBEA	460V/60Hz 380-415V/50Hz	3PH	-	-	-
LBP	3	UL 63A113 1	515800036	R 404A	L63A113BBCA	208-230V/60Hz 1~	CSR	GE 3ARR3T23C3	161-193/250V	20/440
	3	UL 63A113 1	515800023	R 404A	L63A113DBLA	200-230V/60Hz - 200-220V/50Hz 3~	3PH	-		-
	4	UL 63A183 1	515800024	R 404A	L63A183DBEA	460V/60Hz 380-415V/50Hz	3PH	-		-
	4	UL 63A183 1	515800037	R 404A	L63A183BBCA	208-230V/60Hz 1~	CSR	GE 3ARR3T4B3	216/259/330V	35/440
	4	UL 63A183 1	515800026	R 404A	L63A183DBDA	208-230V/60Hz - 200-220V/50Hz 3~	3PH	-	-	-

Atenção: Em situações de devolução das Unidades Condensadoras em garantia, a mesma perderá a validade, caso fique evidente o uso de dispositivos elétricos fora do especificado.

15.0 - Partida (Start up)

Antes de ligar o sistema de refrigeração, conecte o amperímetro aos terminais para monitorar a corrente durante a partida do compressor. Certifique-se que a corrente elétrica de partida esteja dentro das seguintes especificações:

Condição	Corrente Elétrica
Partida normal com capacitador de partida e funcionamento	20 AMPS e 2-8 AMPS depois da partida

Aviso: Se a corrente elétrica ultrapassar os valores especificados acima por mais de 5 segundos, desligue o compressor e conserte a falha antes de ligar novamente o sistema.

Nota: Certifique-se que a tensão aplicada não será menor do que a mínima tensão admissível pelo compressor (por exemplo 197V para 230/208V - 60Hz) durante o período de partida do mesmo.

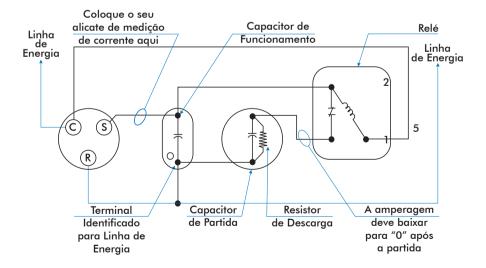


Figura 8: Circuito do compressor monofásico (CSR).

16.0 - Verificação de Contaminação

Se a contaminação do sistema estiver intensa, o filtro secador da linha de sucção pode estar saturado e ineficaz. Verifique a queda de pressão através do filtro secador depois de aproximadamente 8 horas de funcionamento, e se exceder 2psig, substitua o filtro novamente até a limpeza total do sistema.

17.0 - Outros Esclarecimentos

Em caso de dúvidas ou necessidade de informações adicionais e antes de maiores prejuízos, consulte um especialista em seu Revendedor de confiança.

Se as dúvidas persistirem, consulte a EMBRACO.

Telefones para contato:

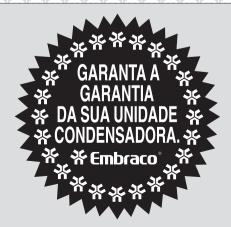
(47) 441-2847

(47) 441-2768

(47) 441-2039

Endereço de e-mail: revenda@embraco.com.br

Instruções de Instalação e Serviço					
Anotações					


TERMOS GERAIS DE GARANTIA

A GARANTIA PERDERÁ A VALIDADE CASO A UNIDADE CONDENSADORA (U.C.):

- 1) Esteja fora do prazo de garantia;
- 2) Não esteja acompanhada do certificado de garantia do cliente;
- 3) Esteja com o certificado de garantia do cliente ilegível, incompleto ou rasurado;
- Em caso de devolução da unidade completa, a garantia somente será reconhecida mediante análise pela Embraco;
- 5) Apresente o compressor com sinais de uso de anti-congelantes (álcool, drayson, acetona, éter, etc.);
- 6) Apresente sinais de violação como rasura ou falta de etiqueta de identificação;
- 7) Compressor ou outro componente queimado por chama;
- 8) Sinais de impacto e amassados;
- 9) Utilização de componentes elétricos inadequados;
- 10) Utilização em tensão e frequência de rede incompatível;
- 11) Refrigerantes incompatíveis com o recomendado aplicados.

PREENCHER NO ATO DA VENDA DA UNIDADE CONDENSADORA.

REFRIGERISTA:						
CIDADE:EST.:						
TELEFONE:	RG:					
TIPO DE APLICAÇÃO						
		Resfriadores de leite Outros (especificar)				

CERTIFICADO DE GARANTIA DE UNIDADES CONDENSADORAS 1½ A 5 HP

PRAZO DE GARANTIA: 1 (UM) ANO

O PRAZO DA PRESENTE GARANTIA DE 1 (UM) ANO SÓ É VÁLIDO NA PRIMEIRA VENDA. EVENTUAL REPOSIÇÃO DO COMPRESSOR OU VENTILADOR TERÁ O PRAZO REDUZIDO DO PERÍODO DECORRIDO NA VENDA ANTERIOR COM UM MÍNIMO DE 90 DIAS.

- NOTA 1- O PRESENTE CERTIFICADO ASSEGURA A GARANTIA SOBRE A UNIDADE CONDENSADORA ACIMA IDENTIFICADA, CONTRA DEFEITOS DE FABRICAÇÃO, DENTRO DO PRAZO DE 1 (UM) ANO, CONTADOS A PARTIR DA DATA ACIMA INDICADA PELO REVENDEDOR.
- NOTA 2- ESTA GARANTIA É VÁLIDA PARA PRODUTOS VENDIDOS E INSTALADOS NO TERRITÓRIO BRASILEIRO.

SR. REVENDEDOR

O preenchimento deste certificado é obrigatório, no ato da venda.

TERMOS GERAIS DE GARANTIA - VIDE VERSO

DESCRIÇÃO SUMÁRIA DO DEFEITO: __

CLIENTE

ESTE CERTIFICADO É DOCUMENTO IMPORTANTI

OBS.: PREENCHA COM CLAREZA AS DUAS PARTES E O VERSO DESTE CERTIFICADO

REVENDEDOR